Real-Time Renewable Power Forecasting

Will Holmgren

Postdoctoral Research Assistant

Department of Physics University of Arizona

Alex Cronin, Associate Professor, Physics **Antonio Lorenzo**, Grad Student, Opt. Sci.

Eric Betterton, Dept. Head, Atmo. Sci. **Mike Leuthold**, Meteorologist, Atmo. Sci. **Chang Ki Kim**, Post doc, Atmo. Sci.

Ardeth Barnhart, Director, UA-REN **Rey Granillo**, Developer, UA-REN

The Solution:

UA + TEP developing renewables forecasts

How can forecasts help utilities keep energy costs low and maintain grid reliability?

- Better predictions of generation and load requirements
- Improve energy market trading strategies
- Schedule more efficient generators (e.g. combined cycle vs. combustion turbine)
- Reduce costs associated with generator starts
- Defer maintenance associated with excessive generator set point seeking
- Optimize the use of battery storage

UA is providing TEP with forecasts as we speak!

Forecasting Website for TEP

THE UNIVERSITY OF ARIZONA®

Forecasts for TEP EMS sites, irradiance sensors, and rooftop PV

Home page

About

Feedback

Maps

Full dataset Tucson Tucson animated Tucson animated (flash) UA-STP google map

Aggregate plots

EMS Aggregate EMS Solar Aggregate EMS Wind Aggregate DG Aggregate Total Aggregate

TEP EMS data

csv files

Irradiance sensors

kW rooftop PV

Environmental data

Other resources

Toggle Operations / Marketing View

Different forecasting methods work better at different time scales.

Minutes Hours Days Seasons Years

Sensor Network

Satellite Imagery

Numerical Weather Models

Climate Models

Numerical Weather Prediction at UA

- Local/regional knowledge of weather is extremely important
- State of the art model modified to better represent the unique characteristics of southwestern U.S. weather
 - Mountains + moisture + heating = monsoon storms
 - Unreliable initialization data from Mexico
 - Extreme planetary boundary layer heights
 - Rapidly changing land/surface characteristics
- Five model runs per day, out to 72 hours in advance
- 1.8 km resolution, 3 minute outputs of:
 - GHI, DNI, 10 m wind, 80 m wind, temp

Animation available at: http://forecasting.uaren.org

Satellite Derived Solar Irradiance

PV Cloud Detection Network

UA Science and Technology Park 20 MW of Solar PV

Network of irradiance sensors provides 15-30 minute ahead warnings of clouds

Network Forecast

Behind the Meter Visibility and Forecasting

The Solution:

UA + TEP developing renewables forecasts

Working with APS, SRP, PNM, IID, EPE, IPC to explore forecasting in their service territories

The Solution:

UA + TEP developing renewables forecasts

How can forecasts help utilities keep energy costs low and maintain grid reliability?

- Better predictions of generation and load requirements
- Improve energy market trading strategies
- Schedule more efficient generators (e.g. combined cycle vs. combustion turbine)
- Reduce costs associated with generator starts
- Defer maintenance associated with excessive generator set point seeking
- Optimize the use of battery storage

UA is providing TEP with forecasts as we speak!